Hop til indhold

Kan det ske tilfældigt?

Det høres jævnligt, at alt kan ske tilfældigt – såsom at livet opstår af sig selv på jorden – bare der er tid nok (underforstået, at når talen er om livet, har der været mere end tid nok). Et eksempel, der også tit bliver givet i den forbindelse, er, at hvis man sætter en gruppe aber til at taste tilfældigt løs på et tastetur, vil de på et tidspunkt ende med at skrive Shakespeares samlede værker, hvis bare de bliver ved med at taste længe nok. 

Det er for så vidt også rigtigt, at det vil de gøre, hvis de bare bliver ved med at taste ”længe nok”. Spørgsmålet er blot, hvor længe ”længe nok” er. Så snart man begynder at regne på tallene, viser det sig hurtigt, at universet for slet ikke at tale om Jorden ikke er store nok eller har eksisteret længe nok til, at der er sandsynlighed for, at den slags hændelser vil ske. 

Lad os for et øjeblik vente med Shakespeares samlede værker og blot tage et enkelt sætningsled såsom ”At være eller ikke være…”. Hvor længe eller hvor mange gange skal en abe taste løs, før det er sandsynligt, at den ved et tilfælde skriver ”At være eller ikke være…”. Det er ikke så vanskeligt at regne ud.

”At være eller ikke være…” består af 22 anslag inklusive mellemrum. Lad os derfor starte med at spørge, hvor mange kombinationer på 22 anslag, vi kan lave med de 28 bogstaver plus mellemrum (dvs. 29 i alt). Svaret er 29 ganget med sig selv 22 gange eller 29^22 = 1,4885243854308330243933856457724^32 (dvs. cirka 1,5 med 32 nuller bagefter = 150.000 milliarder milliarder milliarder). For hver gang aben skal til at taste, er der altså 1 ud 150.000 milliarder milliarder milliarders chance for, at den efterfølgende skriver ”At være eller ikke være…”. 

Sagt med andre ord skal aben taste 150.000 milliarder milliarder milliarder gange, før vi kan sige, at det er mere sandsynligt, at den på et tidspunkt kommer til at taste ”At være eller ikke være…”, end at den ikke gør det. 

Hvor længe vil det tage aben at taste 150.000 milliarder milliarder milliarder bogstaver? Lad os antage, at aben kan taste fem bogstaver i sekundet, hvilket vel er rimeligt godt. Da har den brug for 30.000 milliarder milliarder milliarder sekunder. Der er 31.536.000 sekunder på et år, hvilket betyder, at aben behøver ca. 4,7^24 år (4,7 med 24 nuller bagefter = 4,7 millioner milliarder milliarder år). 

Dette tal kan sammenholdes med, at universet kun har eksisteret i 14,5 milliarder år og jorden i 4,5 milliarder år. Selv hvis vi sætter en milliard aber til at taste løs på denne måde, vil de stadig skulle taste uafbrudt i 4,7 millioner milliarder milliarder år, før vi kan tale om, at der er en sandsynlighed for, at en af dem vil komme til at taste ”At være eller ikke være…”. 

Hvad der så kræves for at skrive Shakespeares samlede værker på denne måde, er alle velkomne til at regne videre på, ligesom man selvfølgelig også er velkommen til at begynde at kaste sig i beregning af sandsynligheder for, at liv skulle kunne opstå af sig selv i den tid, Jorden har eksisteret. Derom mere senere.

%d bloggers like this: